Display Settings:


Send to:

Choose Destination
See comment in PubMed Commons below
Z Naturforsch C. 2012 Mar-Apr;67(3-4):172-80.

Anti-Helicobacter pylori activity of the methanolic extract of Geum iranicum and its main compounds.

Author information

  • 1Department of Pharmacognosy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.


Geum iranicum Khatamsaz, belonging to the Rosaceae family, is an endemic plant of Iran. The methanol extract of the roots of this plant showed significant activity against one of the clinical isolates of Helicobacter pylori which was resistant to metronidazole. The aim of this study was the isolation and evaluation of the major compounds of G. iranicum effective against H. pylori. The compounds were isolated using various chromatographic methods and identified by spectroscopic data (1H and 13C NMR, HMQC, HMBC, EI-MS). An antimicrobial susceptibility test was performed employing the disk diffusion method against clinical isolates of H. pylori and a micro dilution method against several Gram-positive and Gram-negative bacteria; additionally the inhibition zone diameters (IZD) and minimum inhibitory concentrations (MIC) values were recorded. Nine compounds were isolated: two triterpenoids, uvaol and niga-ichigoside F1, three sterols, beta-sitosterol, beta-sitosteryl acetate, and beta-sitosteryl linoleate, one phenyl propanoid, eugenol, one phenolic glycoside, gein, one flavanol, (+)-catechin, and sucrose. The aqueous fraction, obtained by partitioning the MeOH extract with water and chloroform, was the most effective fraction of the extract against all clinical isolates of H. pylori. Further investigation of the isolated compounds showed that eugenol was effective against H. pylori but gein, diglycosidic eugenol, did not exhibit any activity against H. pylori. The subfraction D4 was the effective fraction which contained tannins. It appeared that tannins were probably the active compounds responsible for the anti-H. pylori activity of G. iranicum. The aqueous fraction showed a moderate inhibitory activity against both Gram-positive and Gram-negative bacteria. The MIC values indicated that Gram-positive bacteria including Staphylococcus aureus, Staphylococcus epidermidis, and Bacillus subtilis are more susceptible than Gram-neagative bacteria including Escherichia coli and Pseudomonas aeruginosa.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Loading ...
    Write to the Help Desk