Format

Send to:

Choose Destination
See comment in PubMed Commons below
Cluster Comput. 2010 Sep;13(3):315-333.

Parameterized Specification, Configuration and Execution of Data-Intensive Scientific Workflows.

Author information

  • 1Dept. of Computer Science and Engineering, Ohio State University, Columbus, OH 43210.

Abstract

Data analysis processes in scientific applications can be expressed as coarse-grain workflows of complex data processing operations with data flow dependencies between them. Performance optimization of these workflows can be viewed as a search for a set of optimal values in a multidimensional parameter space consisting of input performance parameters to the applications that are known to affect their execution times. While some performance parameters such as grouping of workflow components and their mapping to machines do not affect the accuracy of the analysis, others may dictate trading the output quality of individual components (and of the whole workflow) for performance. This paper describes an integrated framework which is capable of supporting performance optimizations along multiple such parameters. Using two real-world applications in the spatial, multidimensional data analysis domain, we present an experimental evaluation of the proposed framework.

PMID:
22623878
[PubMed]
PMCID:
PMC3356923
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for PubMed Central
    Loading ...
    Write to the Help Desk