Send to:

Choose Destination
See comment in PubMed Commons below
Mol Biol Cell. 2012 Jul;23(14):2770-81. doi: 10.1091/mbc.E12-02-0095. Epub 2012 May 23.

H4K16 acetylation affects recombination and ncRNA transcription at rDNA in Saccharomyces cerevisiae.

Author information

  • 1Dipartimento di Biologia e Biotecnologie, Università di Roma La Sapienza, 00185 Rome, Italy.


Transcription-associated recombination is an important process involved in several aspects of cell physiology. In the ribosomal DNA (rDNA) of Saccharomyces cerevisiae, RNA polymerase II transcription-dependent recombination has been demonstrated among the repeated units. In this study, we investigate the mechanisms controlling this process at the chromatin level. On the basis of a small biased screening, we found that mutants of histone deacetylases and chromatin architectural proteins alter both the amount of Pol II-dependent noncoding transcripts and recombination products at rDNA in a coordinated manner. Of interest, chromatin immunoprecipitation analyses in these mutants revealed a corresponding variation of the histone H4 acetylation along the rDNA repeat, particularly at Lys-16. Here we provide evidence that a single, rapid, and reversible posttranslational modification-the acetylation of the H4K16 residue-is involved in the coordination of transcription and recombination at rDNA.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk