Format

Send to

Choose Destination
See comment in PubMed Commons below
Neuropharmacology. 2012 Sep;63(4):555-64. doi: 10.1016/j.neuropharm.2012.05.007. Epub 2012 May 18.

Effect of ganaxolone and THIP on operant and limited-access ethanol self-administration.

Author information

  • 1Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, USA. ramakerm@ohsu.edu

Abstract

Recent evidence suggests that GABA(A) receptor ligands may regulate ethanol intake via effects at both synaptic and extrasynaptic receptors. For example, the endogenous neurosteroid, allopregnanolone (ALLO) has a similar pharmacological profile as ethanol, and it alters ethanol intake in rodent models. Additionally, recent evidence suggests that δ-subunit-containing extrasynaptic GABA(A) receptors may confer high sensitivity to both ethanol and neurosteroids. The purpose of the present study was to determine the effects of ganaxolone (GAN; an ALLO analog) and gaboxadol (THIP; a GABA(A) receptor agonist with selectivity for the extrasynaptic δ-subunit) on ethanol intake, drinking patterns, and bout characteristics in operant and limited-access self-administration procedures. In separate studies, the effects of GAN (0-10 mg/kg) and THIP (2-16 mg/kg) were tested in C57BL/6J male mice provided with 2-h access to a two-bottle choice of water or 10% ethanol or trained to respond for 30 min of access to 10% ethanol. GAN had no overall significant effect on operant ethanol self-administration, but tended to decrease the latency to consume the first bout. In the limited-access procedure, GAN dose-dependently decreased ethanol intake. THIP dose-dependently decreased ethanol intake in both paradigms, altering both the consummatory and appetitive processes of operant self-administration as well as shifting the drinking patterns in both procedures. These results add to literature suggesting time-dependent effects of neurosteroids to promote the onset, and to subsequently decrease, ethanol drinking behavior, and they support a role for extrasynaptic GABA(A) receptor activation in ethanol reinforcement.

Copyright © 2012 Elsevier Ltd. All rights reserved.

[PubMed - indexed for MEDLINE]
Free PMC Article

Publication Types, MeSH Terms, Substances, Grant Support

Publication Types

MeSH Terms

Substances

Grant Support

PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science Icon for PubMed Central
    Loading ...
    Write to the Help Desk