Send to:

Choose Destination
See comment in PubMed Commons below
J Dairy Sci. 2012 Jun;95(6):3248-58. doi: 10.3168/jds.2011-4984.

Quantifying phytate in dairy digesta and feces: alkaline extraction and high-performance ion chromatography.

Author information

  • 1Department of Dairy Science, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA.


Development of an analytical method with appropriate combination of extraction and quantification approaches for undigested phytate in ruminant feces and digesta will advance knowledge of phytate degradation in ruminants and help to reduce phosphorus excretion. Established quantification methods give satisfactory results for feedstuffs and nonruminant manure but recovery of phytate is incomplete for ruminant feces and digesta because of their complex sample matrix and low ratio of phytate to inorganic P. The objective was to develop a robust, accurate, sensitive, and inexpensive method to extract and quantify phytate in feeds, ruminant feces, and digesta. Diets varying in phytate content were fed to dairy heifers, dry cows, and lactating cows to generate digesta and fecal samples of varying composition to challenge extraction and quantification methods. Samples were extracted with 0.5 M HCl or 0.25 M NaOH + 0.05 M EDTA. Acid extracts were mixed with 20% NaCl, alkaline extracts were acidified to final pH < 2, and then both extracts were clarified with C₁₈ cartridges and 0.2-μm filters. High-performance ion chromatography (HPIC) was used to quantify phytate. In feed samples, the measured phytate was comparable in alkaline and acid extracts (2,965 vs. 3,085 μg/g of DM). In digesta and fecal samples, alkaline extraction yielded greater estimates of phytate content than did acid extraction (40.7 vs. 33.6 and 202.9 vs. 144.4 μg/g of DM for digesta and fecal samples, respectively). Analysis of alkaline extracts by HPIC is usually not possible because of sample matrix interferences; acidification and C(18)-cartridge elution of alkaline extracts prevented this interference. Pure phytate added to dry samples before extraction was almost completely recovered (88 to 105%), indicating high extraction efficiency, no adverse effect of extract clean-up procedures, and accurate quantification of phytate. The proposed method is rapid, inexpensive, robust, and combines the extraction power of NaOH-EDTA with the precision and sensitivity of HPIC quantification, allowing accurate quantification of phytate in feeds, ruminant digesta, and fecal samples.

Copyright © 2012 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk