Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Crit Care Med. 2012 Jun;40(6):1873-8. doi: 10.1097/CCM.0b013e3182474ca7.

Endotoxemia reduces cerebral perfusion but enhances dynamic cerebrovascular autoregulation at reduced arterial carbon dioxide tension.

Author information

  • 1Department of Anesthesia, The Copenhagen Muscle Research Center, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.

Abstract

OBJECTIVE:

The administration of endotoxin to healthy humans reduces cerebral blood flow but its influence on dynamic cerebral autoregulation remains unknown. We considered that a reduction in arterial carbon dioxide tension would attenuate cerebral perfusion and improve dynamic cerebral autoregulation in healthy subjects exposed to endotoxemia.

DESIGN:

Prospective descriptive study.

SETTING:

Hospital research laboratory.

SUBJECTS:

Ten healthy young subjects (age: 32 ± 8 yrs [mean ± SD]; weight: 84 ± 10 kg; weight: 184 ± 5 cm; body mass index: 25 ± 2 kg/m2) participated in the study.

INTERVENTIONS:

Systemic hemodynamics, middle cerebral artery mean flow velocity, and dynamic cerebral autoregulation evaluated by transfer function analysis in the very low (<0.07 Hz), low (0.07-0.15 Hz), and high (>0.15 Hz) frequency ranges were monitored in these volunteers before and after an endotoxin bolus (2 ng/kg; Escherichia coli).

MEASUREMENTS AND MAIN RESULTS:

Endotoxin increased body temperature of the subjects from 36.8 ± 0.4°C to 38.6 ± 0.5°C (p < .001) and plasma tumor necrosis factor-α from 5.6 (2.8-6.7) pg/mL to 392 (128-2258) pg/mL (p < .02). Endotoxemia had no influence on mean arterial pressure (95 [74-103] mm Hg vs. 92 [78-104] mm Hg; p = .75), but increased cardiac output (8.3 [6.1-9.5] L·min(-1) vs. 6.0 [4.5-8.2] L·min(-1); p = .02) through an elevation in heart rate (82 ± 9 beats·min(-1) vs. 63 ± 10 beats·min(-1); p < .001), whereas arterial carbon dioxide tension (37 ± 5 mm Hg vs. 41 ± 2 mm Hg; p < .05) and middle cerebral artery mean flow velocity (37 ± 9 cm·sec(-1) vs. 47 ± 10 cm·sec(-1); p < .01) were reduced. In regard to dynamic cerebral autoregulation, endotoxemia was associated with lower middle cerebral artery mean flow velocity variability (1.0 ± 1.0 [cm·sec(-1)] Hz vs. 2.8 ± 1.5 [cm·sec(-1)] Hz; p < .001), reduced gain (0.52 ± 0.11 cm·sec(-1) x mm Hg(-1) vs. 0.74 ± 0.17 cm·sec(-1) x mm Hg(-1); p < .05), normalized gain (0.22 ± 0.05 vs. 0.40 ± 0.17%·%; p < .05), and higher mean arterial pressure-to-middle cerebral artery mean flow velocity phase difference (p < .05) in the low frequency range (0.07-0.15 Hz).

CONCLUSIONS:

These data support that the reduction in arterial carbon dioxide tension explains the improved dynamic cerebral autoregulation and the reduced cerebral perfusion encountered in healthy subjects during endotoxemia.

Comment in

PMID:
22610190
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Lippincott Williams & Wilkins
    Loading ...
    Write to the Help Desk