Display Settings:

Format

Send to:

Choose Destination
We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
ACS Nano. 2012 Jun 26;6(6):4694-701. doi: 10.1021/nn204352r. Epub 2012 May 31.

Family of enhanced photoacoustic imaging agents for high-sensitivity and multiplexing studies in living mice.

Author information

  • 1Molecular Imaging Program at Stanford, Department of Radiology and Bio-X Program, Stanford University, Palo Alto, California 94305, USA.

Abstract

Photoacoustic imaging is a unique modality that overcomes to a great extent the resolution and depth limitations of optical imaging while maintaining relatively high contrast. However, since many diseases will not manifest an endogenous photoacoustic contrast, it is essential to develop exogenous photoacoustic contrast agents that can target diseased tissue(s). Here we present a family of novel photoacoustic contrast agents that are based on the binding of small optical dyes to single-walled carbon nanotubes (SWNT-dye). We synthesized five different SWNT-dye contrast agents using different optical dyes, creating five "flavors" of SWNT-dye nanoparticles. In particular, SWNTs that were coated with either QSY(21) (SWNT-QSY) or indocyanine green (SWNT-ICG) exhibited over 100-times higher photoacoustic contrast in living animals compared to plain SWNTs, leading to subnanomolar sensitivities. We then conjugated the SWNT-dye conjugates with cyclic Arg-Gly-Asp peptides to molecularly target the α(v)β(3) integrin, which is associated with tumor angiogenesis. Intravenous administration of these tumor-targeted imaging agents to tumor-bearing mice showed significantly higher photoacoustic signal in the tumor than in mice injected with the untargeted contrast agent. Finally, we were able to spectrally separate the photoacoustic signals of SWNT-QSY and SWNT-ICG in living animals injected subcutaneously with both particles in the same location, opening the possibility for multiplexing in vivo studies.

PMID:
22607191
[PubMed - indexed for MEDLINE]
PMCID:
PMC3397693
Free PMC Article

Images from this publication.See all images (5)Free text

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Chemical Society Icon for PubMed Central
    Loading ...
    Write to the Help Desk