Display Settings:

Format

Send to:

Choose Destination
We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Dev Cell. 2012 May 15;22(5):1052-64. doi: 10.1016/j.devcel.2012.03.003.

miR-9 controls the timing of neurogenesis through the direct inhibition of antagonistic factors.

Author information

  • 1Zebrafish Neurogenetics Group, Laboratory of Neurobiology and Development, CNRS UPR 3294, Institute of Neurobiology Alfred Fessard, 91198 Gif-sur-Yvette Cédex, France. coolen@inaf.cnrs-gif.fr

Abstract

The timing of commitment and cell-cycle exit within progenitor populations during neurogenesis is a fundamental decision that impacts both the number and identity of neurons produced during development. We show here that microRNA-9 plays a key role in this process through the direct inhibition of targets with antagonistic functions. Across the ventricular zone of the developing zebrafish hindbrain, miR-9 expression occurs at a range of commitment stages. Abrogating miR-9 function transiently delays cell-cycle exit, leading to the increased generation of late-born neuronal populations. Target protection analyses in vivo identify the progenitor-promoting genes her6 and zic5 and the cell-cycle exit-promoting gene elavl3/HuC as sequential targets of miR-9 as neurogenesis proceeds. We propose that miR-9 activity generates an ambivalent progenitor state poised to respond to both progenitor maintenance and commitment cues, which may be necessary to adjust neuronal production to local extrinsic signals during late embryogenesis.

Copyright © 2012 Elsevier Inc. All rights reserved.

PMID:
22595676
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk