Do the chaotic features of gait change in Parkinson's disease?

J Theor Biol. 2012 Aug 21:307:160-7. doi: 10.1016/j.jtbi.2012.04.032. Epub 2012 May 12.

Abstract

Some previous studies have focused on chaotic properties of Parkinson's disease (PD). It seems that considering PD from dynamical systems perspective is a relevant method that may lead to better understanding of the disease. There is some ambiguity about chaotic nature in PD symptoms and normal behaviour. Some studies claim that normal gait has somehow a chaotic behaviour and disturbed gait in PD has decreased chaotic nature. However, it is worth noting that the basis of this idea is the difference of fractal behaviour in gait of normal and PD patients, which is concluded from Long Range Correlation (LRC) indices. Our primary calculations show that a large number of normal persons and patients have similar LRC. It seems that chaotic studies on PD need a different view. Because of short time recording of symptoms, accurate calculation of chaotic features is tough. On the other hand, long time recording of symptoms is experimentally difficult. In this research, we have first designed a physiologically plausible model for normal and PD gait. Then, after validating the model with neural network classifier, we used the model for extracting long time simulation of stride in normal and PD persons. These long time simulations were then used for calculating the chaotic features of gait. According to change of phase space behaviour and alteration of three largest lyapunov exponents, it was observed that simulated normal persons act as chaotic systems in stride production, but simulated PD does not have chaotic dynamics and is stochastic. Based on our results, it may be claimed that normal gait has chaotic nature which is disturbed in PD state. Surely, long time real recordings from gait signal in normal persons and PD patients are necessary to warranty this hypothesis.

MeSH terms

  • Basal Ganglia / pathology
  • Basal Ganglia / physiopathology
  • Computer Simulation
  • Gait / physiology*
  • Health
  • Humans
  • Models, Neurological
  • Nonlinear Dynamics*
  • Parkinson Disease / physiopathology*