Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Proteome Res. 2012 Jun 1;11(6):3414-22. doi: 10.1021/pr3002639. Epub 2012 May 21.

Return of the metabolic trajectory to the original area after human bone marrow mesenchymal stem cell transplantation for the treatment of fulminant hepatic failure.

Author information

  • 1State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University , 79 Qingchun Rd., Hangzhou 310003, China.

Abstract

Our recent study first demonstrated that human bone marrow mesenchymal stem cell (hBMSC) transplantation could prevent death from fulminant hepatic failure (FHF) in pigs. To further clarify the metabolic mechanism of hBMSC transplantation in FHF, the plasma collected from FHF pigs that received transplantation of hBMSCs was examined using metabolic analysis to identify the key molecular markers that regulate recovery. The results showed that obvious metabolic disturbance occurred during FHF, whereas the hBMSC transplantation group showed less severe liver injury. The metabolic trajectory returns to its original state at week 3 following the hBMSC transplantation. In total, the concentration of 26 metabolites, including conjugated bile acids, phosphatidylcholines, lysophosphatidylcholines, fatty acids, amino acid and sphingomyelin, are significantly different between the FHF group and the hBMSC transplantation group. Moreover, the time course of changes in the metabolites corresponded with that of the biochemical and histological analyses. Real-time PCR further confirmed that the gene expression of phospholipase A1, lecithin-cholesterol acyltransferase and lysophosphatidylcholine acyltransferase 1 decreased significantly, whereas that of phospholipase A2 remained stable, which explains the decrease of the phosphatidylcholines and lysophosphatidylcholines. These novel results have revealed a metabolic mechanism for the hBMSC transplantation in FHF, which could lead to the future development of treatment strategies for stem cell therapies.

PMID:
22582960
[PubMed - in process]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Chemical Society
    Loading ...
    Write to the Help Desk