Send to:

Choose Destination
See comment in PubMed Commons below
Appl Environ Microbiol. 2012 Jul;78(14):4923-32. doi: 10.1128/AEM.00688-12. Epub 2012 May 11.

Syntrophic oxidation of propionate in rice field soil at 15 and 30°C under methanogenic conditions.

Author information

  • 1College of Resources and Environmental Sciences, China Agricultural University, Beijing, China.


Propionate is one of the major intermediary products in the anaerobic decomposition of organic matter in wetlands and paddy fields. Under methanogenic conditions, propionate is decomposed through syntrophic interaction between proton-reducing and propionate-oxidizing bacteria and H(2)-consuming methanogens. Temperature is an important environmental regulator; yet its effect on syntrophic propionate oxidation has been poorly understood. In the present study, we investigated the syntrophic oxidation of propionate in a rice field soil at 15°C and 30°C. [U-(13)C]propionate (99 atom%) was applied to anoxic soil slurries, and the bacteria and archaea assimilating (13)C were traced by DNA-based stable isotope probing. Syntrophobacter spp., Pelotomaculum spp., and Smithella spp. were found significantly incorporating (13)C into their nucleic acids after [(13)C]propionate incubation at 30°C. The activity of Smithella spp. increased in the later stage, and concurrently that of Syntrophomonas spp. increased. Aceticlastic Methanosaetaceae and hydrogenotrophic Methanomicrobiales and Methanocellales acted as methanogenic partners at 30°C. Syntrophic oxidation of propionate also occurred actively at 15°C. Syntrophobacter spp. were significantly labeled with (13)C, whereas Pelotomaculum spp. were less active at this temperature. In addition, Methanomicrobiales, Methanocellales, and Methanosarcinaceae dominated the methanogenic community, while Methanosaetaceae decreased. Collectively, temperature markedly influenced the activity and community structure of syntrophic guilds degrading propionate in the rice field soil. Interestingly, Geobacter spp. and some other anaerobic organisms like Rhodocyclaceae, Acidobacteria, Actinobacteria, and Thermomicrobia probably also assimilated propionate-derived (13)C. The mechanisms for the involvement of these organisms remain unclear.

[PubMed - indexed for MEDLINE]
Free PMC Article

Publication Types, MeSH Terms, Substances, Secondary Source ID

Publication Types

MeSH Terms


Secondary Source ID

PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk