Display Settings:


Send to:

Choose Destination
Sci Rep. 2012;2:399. doi: 10.1038/srep00399. Epub 2012 May 8.

Effect of rapamycin on immunity induced by vector-mediated dystrophin expression in mdx skeletal muscle.


Duchenne muscular dystrophy (DMD) is caused by mutations in the dystrophin gene. Therapeutic gene replacement of a dystrophin cDNA into dystrophic muscle can provide functional dystrophin protein to the tissue. However, vector-mediated gene transfer is limited by anti-vector and anti-transgene host immunity that causes rejection of the therapeutic protein. We hypothesized that rapamycin (RAPA) would diminish immunity due to vector-delivered recombinant dystrophin in the adult mdx mouse model for DMD. To test this hypothesis, we injected limb muscle of mdx mice with RAPA-containing, poly-lactic-co-glycolic acid (PLGA) microparticles prior to dystrophin gene transfer and analyzed treated tissue after 6 weeks. RAPA decreased host immunity against vector-mediated dystrophin protein, as demonstrated by decreased cellular infiltrates and decreased anti-dystrophin antibody production. The interpretation of the effect of RAPA on recombinant dystrophin expression was complex because of an effect of PLGA microparticles.

Free PMC Article

Images from this publication.See all images (3)Free text

Figure 1
Figure 2
Figure 3
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Nature Publishing Group Icon for PubMed Central
    Loading ...
    Write to the Help Desk