Format

Send to:

Choose Destination
See comment in PubMed Commons below
Proc Natl Acad Sci U S A. 2012 May 22;109(21):8270-3. doi: 10.1073/pnas.1205902109. Epub 2012 May 7.

Detecting activity-evoked pH changes in human brain.

Author information

  • 1Department of Radiology, University of Iowa, Iowa City, IA 52242, USA. vincent-magnotta@uiowa.edu

Abstract

Localized pH changes have been suggested to occur in the brain during normal function. However, the existence of such pH changes has also been questioned. Lack of methods for noninvasively measuring pH with high spatial and temporal resolution has limited insight into this issue. Here we report that a magnetic resonance imaging (MRI) strategy, T(1) relaxation in the rotating frame (T(1)ρ), is sufficiently sensitive to detect widespread pH changes in the mouse and human brain evoked by systemically manipulating carbon dioxide or bicarbonate. Moreover, T(1)ρ detected a localized acidosis in the human visual cortex induced by a flashing checkerboard. Lactate measurements and pH-sensitive (31)P spectroscopy at the same site also identified a localized acidosis. Consistent with the established role for pH in blood flow recruitment, T(1)ρ correlated with blood oxygenation level-dependent contrast commonly used in functional MRI. However, T(1)ρ was not directly sensitive to blood oxygen content. These observations indicate that localized pH fluctuations occur in the human brain during normal function. Furthermore, they suggest a unique functional imaging strategy based on pH that is independent of traditional functional MRI contrast mechanisms.

PMID:
22566645
[PubMed - indexed for MEDLINE]
PMCID:
PMC3361452
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk