Format

Send to:

Choose Destination
See comment in PubMed Commons below
Curr Stem Cell Res Ther. 2012 Sep;7(5):347-55.

Transplantation of adipose derived stem cells for peripheral nerve regeneration in sciatic nerve defects of the rat.

Author information

  • 1Department of Plastic and Reconstructive Surgery, Korea University Anam Hospital, Anam-dong, Seongbuk-gu, Seoul, Republic of Korea.

Abstract

Tissue engineering approaches for promoting the repair of peripheral nerve injuries have focused on cell-based therapies involving Adipose-derived stem cells (ASCs). The authors evaluated the effects of undifferentiated ASCs and of neurally differentiated ASCs on the regenerating abilities of peripheral nerves. We hope that this would demonstrate the feasibility of using adipose derived stem cells for peripheral nerve regeneration and provide clues regarding the use of adipose- derived stem cells. ASCs were isolated and cultured. Then the cells were cultured with neuronal induction agents for neural differentiation. ASCs and neurally differentiated ASCs were transplanted into sciatic nerve defects. After 12 weeks, the number and diameter of the myelinated fibers were measured and nerve conduction study was done. The extent of regeneration of myelinated fibers in the neurally differentiated ASCs transplanted group was greater than that in the ASCs transplanted group or the control group. However, thickness of myelin sheath and diameter of nerve fibers in the ASCs transplanted group were greater than those in the neutrally differentiated ASCs transplanted group or the control group. Nerve conduction study showed good recovery in the neurally differentiated ASCs transplanted groups. Muscles can atrophy and contract if denervation has started. It would be difficult to recover muscle function even if the nerve was reinnervated. Therefore, although neurally differentiated ASCs were found to have a greater functional effect than non-differentiated ASCs, time constraint is important when considering a method of ASCs transplantation.

PMID:
22563658
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Bentham Science Publishers Ltd.
    Loading ...
    Write to the Help Desk