Format

Send to

Choose Destination
See comment in PubMed Commons below
Nat Mater. 2012 May 6;11(7):585-9. doi: 10.1038/nmat3315.

Scanning tunnelling microscopy imaging of symmetry-breaking structural distortion in the bismuth-based cuprate superconductors.

Author information

  • 1Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA.

Abstract

A complicating factor in unravelling the theory of high-temperature (high-T(c)) superconductivity is the presence of a 'pseudogap' in the density of states, the origin of which has been debated since its discovery. Some believe the pseudogap is a broken symmetry state distinct from superconductivity, whereas others believe it arises from short-range correlations without symmetry breaking. A number of broken symmetries have been imaged and identified with the pseudogap state, but it remains crucial to disentangle any electronic symmetry breaking from the pre-existing structural symmetry of the crystal. We use scanning tunnelling microscopy to observe an orthorhombic structural distortion across the cuprate superconducting Bi(2)Sr(2)Ca(n-1)Cu(n)O(2n+4+x) (BSCCO) family tree, which breaks two-dimensional inversion symmetry in the surface BiO layer. Although this inversion-symmetry-breaking structure can impact electronic measurements, we show from its insensitivity to temperature, magnetic field and doping, that it cannot be the long-sought pseudogap state. To detect this picometre-scale variation in lattice structure, we have implemented a new algorithm that will serve as a powerful tool in the search for broken symmetry electronic states in cuprates, as well as in other materials.

[PubMed]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Nature Publishing Group
    Loading ...
    Write to the Help Desk