Send to:

Choose Destination
See comment in PubMed Commons below
Cell Metab. 2012 May 2;15(5):703-12. doi: 10.1016/j.cmet.2012.04.011.

IRS2 signaling in LepR-b neurons suppresses FoxO1 to control energy balance independently of leptin action.

Author information

  • 1Howard Hughes Medical Institute, Division of Endocrinology, Children's Hospital Boston, Harvard Medical School, Boston, MA 02062, USA.


Irs2-mediated insulin/IGF1 signaling in the CNS modulates energy balance and glucose homeostasis; however, the site for Irs2 function is unknown. The hormone leptin mediates energy balance by acting on leptin receptor (LepR-b)-expressing neurons. To determine whether LepR-b neurons mediate the metabolic actions of Irs2 in the brain, we utilized Lepr(cre) together with Irs2(L/L) to ablate Irs2 expression in LepR-b neurons (Lepr(ΔIrs2)). Lepr(ΔIrs2) mice developed obesity, glucose intolerance, and insulin resistance. Leptin action was not altered in young Lepr(ΔIrs2) mice, although insulin-stimulated FoxO1 nuclear exclusion was reduced in Lepr(ΔIrs2) mice. Indeed, deletion of Foxo1 from LepR-b neurons in Lepr(ΔIrs2) mice normalized energy balance, glucose homeostasis, and arcuate nucleus gene expression. Thus, Irs2 signaling in LepR-b neurons plays a crucial role in metabolic sensing and regulation. While not required for leptin action, Irs2 suppresses FoxO1 signaling in LepR-b neurons to promote energy balance and metabolism.

Copyright © 2012 Elsevier Inc. All rights reserved.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science Icon for PubMed Central
    Loading ...
    Write to the Help Desk