Format

Send to:

Choose Destination
See comment in PubMed Commons below
Chemosphere. 2012 Sep;89(1):1-9. doi: 10.1016/j.chemosphere.2012.04.002. Epub 2012 Apr 30.

The effect of triclosan on microbial community structure in three soils.

Author information

  • 1Department of Environmental Science and Technology, School of Applied Sciences, Cranfield University, College Road, Cranfield, Bedfordshire MK43 0AL, UK.

Abstract

The application of sewage sludge to land can expose soils to a range of associated chemical toxicants. In this paper we explore the effects of the broad spectrum anti-microbial compound triclosan on the phenotypic composition of the microbial communities of three soils of contrasting texture (loamy sand, sandy loam and clay) using phospholipid fatty-acid (PLFA) analysis. Each soil type was dosed and subsequently re-dosed 6 weeks later with triclosan at five nominal concentrations in microcosms (10, 100, 500, 1000 mg kg(-1) and a zero-dose control). PLFA profiles were analysed using multivariate statistics focussing on changes in the soil phenotypic community structure. Additionally, ratios of fungal:bacterial PLFA indicators and cyclo:mono-unsaturated PLFAs (a common stress indicator) were calculated. It was hypothesised that triclosan addition would alter the community structure in each soil with a particular effect on the fungal:bacterial ratio, since bacteria are likely to be more susceptible to triclosan than fungi. It was also hypothesised that the PLFA response to re-dosing would be suppressed due to acclimation. Although the microbial community structure changed over the course of the experiment, the response was complex. Soil type and time emerged as the most important explanatory factors. Principal component analysis was used to detect phenotypic responses to different doses of triclosan in each soil. As expected, there was a significant increase in the fungal:bacterial ratio with triclosan dose especially in treatments with the highest nominal concentrations. Furthermore, the PLFA response to re-dosing was negligible in all soils confirming the acclimation hypothesis.

Copyright © 2012 Elsevier Ltd. All rights reserved.

PMID:
22551872
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk