Send to:

Choose Destination
See comment in PubMed Commons below
J Pineal Res. 2012 Nov;53(4):325-34. doi: 10.1111/j.1600-079X.2012.01002.x. Epub 2012 Apr 27.

Melatonin modulates TLR4-mediated inflammatory genes through MyD88- and TRIF-dependent signaling pathways in lipopolysaccharide-stimulated RAW264.7 cells.

Author information

  • 1Life Science College, Anhui Agricultural University, Hefei, China.


Increasing evidence demonstrates that melatonin has an anti-inflammatory effect. Nevertheless, the molecular mechanisms remain obscure. In this study, we investigated the effect of melatonin on toll-like receptor 4 (TLR4)-mediated molecule myeloid differentiation factor 88 (MyD88)-dependent and TRIF-dependent signaling pathways in lipopolysaccharide (LPS)-stimulated macrophages. RAW264.7 cells were incubated with LPS (2.0 μg/mL) in the absence or presence of melatonin (10, 100, 1000 μm). As expected, melatonin inhibited TLR4-mediated tumor necrosis factor alpha (TNF-α), interleukin (IL)-1β, IL-6, IL-8, and IL-10 in LPS-stimulated macrophages. In addition, melatonin significantly attenuated LPS-induced upregulation of cyclooxygenase (COX)-2 and inducible nitric oxide synthase (iNOS) in macrophages. Further analysis showed that melatonin inhibited the expression of MyD88 in LPS-stimulated macrophages. Although it had no effect on TLR4-mediated phosphorylation of c-Jun N-terminal kinase (JNK), p38, and extracellular regulated protein kinase (ERK), melatonin significantly attenuated the activation of nuclear factor kappa B (NF-κB) in LPS-stimulated macrophages. In addition, melatonin inhibited TLR4-mediated Akt phosphorylation in LPS-stimulated macrophages. Moreover, melatonin significantly attenuated the elevation of interferon (IFN)-regulated factor-3 (IRF3), which was involved in TLR4-mediated TRIF-dependent signaling pathway, in LPS-stimulated macrophages. Correspondingly, melatonin significantly alleviated LPS-induced IFN-β in macrophages. In conclusion, melatonin modulates TLR4-mediated inflammatory genes through MyD88-dependent and TRIF-dependent signaling pathways.

© 2012 John Wiley & Sons A/S.

[PubMed - indexed for MEDLINE]

Publication Types, MeSH Terms, Substances

PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Wiley
    Loading ...
    Write to the Help Desk