Discovery of pod shatter-resistant associated SNPs by deep sequencing of a representative library followed by bulk segregant analysis in rapeseed

PLoS One. 2012;7(4):e34253. doi: 10.1371/journal.pone.0034253. Epub 2012 Apr 17.

Abstract

Background: Single nucleotide polymorphisms (SNPs) are an important class of genetic marker for target gene mapping. As of yet, there is no rapid and effective method to identify SNPs linked with agronomic traits in rapeseed and other crop species.

Methodology/principal findings: We demonstrate a novel method for identifying SNP markers in rapeseed by deep sequencing a representative library and performing bulk segregant analysis. With this method, SNPs associated with rapeseed pod shatter-resistance were discovered. Firstly, a reduced representation of the rapeseed genome was used. Genomic fragments ranging from 450-550 bp were prepared from the susceptible bulk (ten F2 plants with the silique shattering resistance index, SSRI <0.10) and the resistance bulk (ten F2 plants with SSRI >0.90), and also Solexa sequencing-produced 90 bp reads. Approximately 50 million of these sequence reads were assembled into contigs to a depth of 20-fold coverage. Secondly, 60,396 'simple SNPs' were identified, and the statistical significance was evaluated using Fisher's exact test. There were 70 associated SNPs whose -log(10)p value over 16 were selected to be further analyzed. The distribution of these SNPs appeared a tight cluster, which consisted of 14 associated SNPs within a 396 kb region on chromosome A09. Our evidence indicates that this region contains a major quantitative trait locus (QTL). Finally, two associated SNPs from this region were mapped on a major QTL region.

Conclusions/significance: 70 associated SNPs were discovered and a major QTL for rapeseed pod shatter-resistance was found on chromosome A09 using our novel method. The associated SNP markers were used for mapping of the QTL, and may be useful for improving pod shatter-resistance in rapeseed through marker-assisted selection and map-based cloning. This approach will accelerate the discovery of major QTLs and the cloning of functional genes for important agronomic traits in rapeseed and other crop species.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Brassica rapa / genetics*
  • Chromosome Mapping
  • Chromosomes, Plant
  • Gene Library
  • Genetic Linkage
  • Genome, Plant
  • High-Throughput Nucleotide Sequencing*
  • Polymorphism, Single Nucleotide*
  • Quantitative Trait Loci*
  • Reproducibility of Results