Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Philos Trans R Soc Lond B Biol Sci. 2012 Jun 5;367(1595):1589-97. doi: 10.1098/rstb.2011.0244.

Large-scale sequestration of atmospheric carbon via plant roots in natural and agricultural ecosystems: why and how.

Author information

  • School of Chemistry and Manchester Interdisciplinary Biocentre, University of Manchester, 131 Princess St, Manchester M1 7DN, UK. dbk@manchester.ac.uk

Abstract

The soil holds twice as much carbon as does the atmosphere, and most soil carbon is derived from recent photosynthesis that takes carbon into root structures and further into below-ground storage via exudates therefrom. Nonetheless, many natural and most agricultural crops have roots that extend only to about 1 m below ground. What determines the lifetime of below-ground C in various forms is not well understood, and understanding these processes is therefore key to optimising them for enhanced C sequestration. Most soils (and especially subsoils) are very far from being saturated with organic carbon, and calculations show that the amounts of C that might further be sequestered (http://dbkgroup.org/carbonsequestration/rootsystem.html) are actually very great. Breeding crops with desirable below-ground C sequestration traits, and exploiting attendant agronomic practices optimised for individual species in their relevant environments, are therefore important goals. These bring additional benefits related to improvements in soil structure and in the usage of other nutrients and water.

PMID:
22527402
[PubMed - indexed for MEDLINE]
PMCID:
PMC3321694
Free PMC Article

Images from this publication.See all images (2)Free text

Figure 1.
Figure 2.
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk