Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Cancer Res Clin Oncol. 2012 Sep;138(9):1501-9. doi: 10.1007/s00432-012-1223-1. Epub 2012 Apr 22.

MicroRNA-21 correlates with tumorigenesis in malignant peripheral nerve sheath tumor (MPNST) via programmed cell death protein 4 (PDCD4).

Author information

  • 1Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan.

Abstract

PURPOSE:

We investigated the miRNA profile in peripheral nerve tumors and clarified the involvement of miRNA in the development and progression of MPNST in comparison with neurofibroma (NF). In addition, we attempted to seek associations between the miRNA and their potential targets in MPNST.

METHODS:

Global miRNA expression profiling was investigated for clinical samples of 6 MPNSTs and 6 NFs. As detected by profiling analysis, the expressions of miR-21 in clinical samples of 12 MPNSTs, 11 NFs, and 5 normal nerves, and 3 MPNST cell lines were compared using quantitative real-time reverse transcription PCR. MPNST cell line (YST-1) was transfected with miR-21 inhibitor to study its effects on cell proliferation, caspase activity, and the expression of miR-21 targets.

RESULTS:

Analysis of miRNA expression profiles in MPNST and NF revealed significantly altered expression levels of nine miRNAs, one of those, miR-21, and its putative target, programmed cell death protein 4 (PDCD4), were selected for further studies. miR-21 expression level in MPNST was significantly higher than that in NF (P < 0.05). In MPNST cells, transfection of miR-21 inhibitor significantly increased caspase activity (P < 0.01), significantly suppressed cell growth (P < 0.05), and upregulated protein level of PDCD4, indicating that miR-21 inhibitor could induce cell apoptosis of MPNST cells.

CONCLUSIONS:

These results suggest that miR-21 plays an important role in MPNST tumorigenesis and progression through its target, PDCD4. MiR-21 and PDCD4 may be candidate novel therapeutic targets against the development or progression of MPNSTs.

PMID:
22526161
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Springer
    Loading ...
    Write to the Help Desk