Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Nat Methods. 2012 Jun;9(6):609-14. doi: 10.1038/nmeth.1985. Epub 2012 Apr 22.

Systematic evaluation of factors influencing ChIP-seq fidelity.

Author information

  • 1Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.

Abstract

We evaluated how variations in sequencing depth and other parameters influence interpretation of chromatin immunoprecipitation-sequencing (ChIP-seq) experiments. Using Drosophila melanogaster S2 cells, we generated ChIP-seq data sets for a site-specific transcription factor (Suppressor of Hairy-wing) and a histone modification (H3K36me3). We detected a chromatin-state bias: open chromatin regions yielded higher coverage, which led to false positives if not corrected. This bias had a greater effect on detection specificity than any base-composition bias. Paired-end sequencing revealed that single-end data underestimated ChIP-library complexity at high coverage. Removal of reads originating at the same base reduced false-positives but had little effect on detection sensitivity. Even at mappable-genome coverage depth of ∼1 read per base pair, ∼1% of the narrow peaks detected on a tiling array were missed by ChIP-seq. Evaluation of widely used ChIP-seq analysis tools suggests that adjustments or algorithm improvements are required to handle data sets with deep coverage.

PMID:
22522655
[PubMed - indexed for MEDLINE]
PMCID:
PMC3477507
Free PMC Article

Images from this publication.See all images (5)Free text

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Nature Publishing Group Icon for PubMed Central
    Loading ...
    Write to the Help Desk