Display Settings:

Format

Send to:

Choose Destination
We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Biochim Biophys Acta. 2012 Jun;1823(6):1102-9. doi: 10.1016/j.bbamcr.2012.04.002. Epub 2012 Apr 13.

Cap-independent Nrf2 translation is part of a lipoic acid-stimulated detoxification stress response.

Author information

  • 1Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA.

Abstract

Little is known about either the basal or stimulated homeostatic mechanisms regulating nuclear tenure of Nf-e2-related factor 2 (Nrf2), a transcription factor that mediates expression of over 200 detoxification genes. Our data show that stress-induced nuclear Nrf2 accumulation is largely from de novo protein synthesis, rather than translocation from a pre-existing cytoplasmic pool. HepG2 cells were used to monitor nuclear Nrf2 24h following treatment with the dithiol micronutrient (R)-α-lipoic acid (LA; 50μM), or vehicle. LA caused a ≥2.5-fold increase in nuclear Nrf2 within 1h. However, pretreating cells with cycloheximide (50μg/ml) inhibited LA-induced Nrf2 nuclear accumulation by 94%. Providing cells with the mTOR inhibitor, rapamycin, decreased basal Nrf2 levels by 84% after 4h, but LA overcame this inhibition. LA-mediated de novo protein translation was confirmed using HepG2 cells transfected with a bicistronic construct containing an internal ribosome entry sequence (IRES) for Nrf2, with significant (P<0.05) increase in IRES use under LA treatment. These results suggest that a dithiol stimulus mediates Nrf2 nuclear tenure via cap-independent protein translation. Thus, translational control of Nrf2 synthesis, rather than reliance solely on pre-existing protein, may mediate the rapid burst of Nrf2 nuclear accumulation following stress stimuli.

Copyright © 2012. Published by Elsevier B.V.

PMID:
22521877
[PubMed - indexed for MEDLINE]

LinkOut - more resources

Full Text Sources

Molecular Biology Databases

PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk