Format

Send to:

Choose Destination
See comment in PubMed Commons below
Int J Food Microbiol. 2012 May 15;156(2):102-11. doi: 10.1016/j.ijfoodmicro.2012.03.008. Epub 2012 Mar 14.

Evaluation of different genetic procedures for the generation of artificial hybrids in Saccharomyces genus for winemaking.

Author information

  • 1Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de los Alimentos, CSIC, P.O. Box 73. E-46100 Burjassot, Valencia, Spain.

Abstract

Several methods based on recombinant DNA techniques have been proposed for yeast strain improvement; however, the most relevant oenological traits depend on a multitude of loci, making these techniques difficult to apply. In this way, hybridization techniques involving two complete genomes became interesting. Natural hybrid strains between different Saccharomyces species have been detected in diverse fermented beverages including wine, cider and beer. These hybrids seem to be better adapted to fluctuating situations typically observed in fermentations due to the acquisition of particular physiological properties of both parental strains. In this work we evaluated the usefulness of three different hybridization methods: spore to spore mating, rare-mating and protoplast fusion for the generation of intra- and inter-specific stable hybrids, being the first report about the comparison of different methods to obtain artificial hybrids to be used in fermentations. Spore to spore mating is an easy but time-consuming method; hybrids generated with this technique could lack some of the industrially relevant traits present in the parental strains because of the segregation occurred during meiosis and spore generation prior to hybridization. Hybrids obtained by protoplast fusion get the complete information of both parents but they are currently considered as genetically modified organisms (GMOs). Finally, hybrids obtained by rare-mating are easily obtained by the optimized methodology described in this work, they originally contain a complete set of chromosomes of both parents and they are not considered as GMOs. Hybrids obtained by means of the three methodological approaches showed a high genetic variability; however, a loss of genetic material was detected in most of them. Based on these results, it became evident that a last crucial aspect to be considered in every hybridization program is the genetic stabilization of recently generated hybrids that guarantee its invariability during future industrial utilization. In this work, a wine yeast genetic stabilization process was developed and vegetatively stable hybrids were obtained.

Copyright © 2012 Elsevier B.V. All rights reserved.

PMID:
22503711
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk