Display Settings:


Send to:

Choose Destination
See comment in PubMed Commons below
Bioconjug Chem. 2012 May 16;23(5):1050-8. doi: 10.1021/bc3000723. Epub 2012 Apr 24.

Hyperbranched glycopolymers for blood biocompatibility.

Author information

  • 1Department of Chemical and Materials Engineering, Alberta Glycomics Centre, University of Alberta , Edmonton, Alberta, Canada.


Carbohydrate-based drug and gene delivery carriers are becoming extremely popular for in vitro and in vivo applications. These carriers are found to be nontoxic and can play a significant role in targeted delivery. However, the interactions of these carriers with blood cells and plasma components are not well explored. To the best of our knowledge, there are currently no reports that explore the role of carbohydrate based carriers for blood biocompatibility. Hyperbranched glycopolymers of varying molecular weights are synthesized by reversible addition-fragmentation chain transfer polymerization (RAFT) and are studied in detail for their biocompatibility, including hemocompatibility and cytotoxicity against different cell lines in vitro. The hemocompatibility studies (such as hemolysis and platelet activation) indicate that hyperbranched glycopolymers of varying molecular weights produced are highly hemocompatible and do not induce clot formation, red blood cell aggregation, and immune response. Hence, it can be concluded that glycopolymers functionalized carriers can serve as an excellent candidate for various biomedical applications. In addition, cytotoxicity of these hyperbranched polymers is studied in primary and malignant cell lines at varying concentrations using cell viability assay.

[PubMed - in process]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Chemical Society
    Loading ...
    Write to the Help Desk