Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
PLoS One. 2012;7(4):e33619. doi: 10.1371/journal.pone.0033619. Epub 2012 Apr 9.

Single nucleotide polymorphisms in the PRDX3 and RPS19 and risk of HPV persistence and cervical precancer/cancer.

Author information

  • 1Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, United States of America. safaeianm@mail.nih.gov

Abstract

BACKGROUND:

Host genetic factors might affect the risk of progression from infection with carcinogenic human papillomavirus (HPV), the etiologic agent for cervical cancer, to persistent HPV infection, and hence to cervical precancer and cancer.

METHODOLOGY/PRINCIPAL FINDINGS:

We assessed 18,310 tag single nucleotide polymorphisms (SNPs) from 1113 genes in 416 cervical intraepithelial neoplasia 3 (CIN3)/cancer cases, 356 women with persistent carcinogenic HPV infection (median persistence of 25 months) and 425 randomly selected women (non-cases and non-HPV persistent) from the 10,049 women from the Guanacaste, Costa Rica HPV natural history cohort. For gene and SNP associations, we computed age-adjusted odds ratio and p-trend. Three comparisons were made: 1) association with CIN3/cancer (compared CIN3/cancer cases to random controls), 2) association with persistence (compared HPV persistence to random controls), and 3) progression (compared CIN3/cancers with HPV-persistent group). Regions statistically significantly associated with CIN3/cancer included genes for peroxiredoxin 3 PRDX3, and ribosomal protein S19 RPS19. The single most significant SNPs from each gene associated with CIN3/cancer were PRDX3 rs7082598 (P(trend)<0.0001), and RPS19 rs2305809 (P(trend)=0.0007), respectively. Both SNPs were also associated with progression.

CONCLUSIONS/SIGNIFICANCE:

These data suggest involvement of two genes, RSP19 and PRDX3, or other SNPs in linkage disequilibrium, with cervical cancer risk. Further investigation showed that they may be involved in both the persistence and progression transition stages. Our results require replication but, if true, suggest a role for ribosomal dysfunction, mitochondrial processes, and/or oxidative stress, or other unknown function of these genes in cervical carcinogenesis.

PMID:
22496757
[PubMed - indexed for MEDLINE]
PMCID:
PMC3322120
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for Public Library of Science Icon for PubMed Central
    Loading ...
    Write to the Help Desk