Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Methods Cell Biol. 2012;110:179-93. doi: 10.1016/B978-0-12-388403-9.00007-2.

CellOrganizer: Image-derived models of subcellular organization and protein distribution.

Author information

  • Lane Center for Computational Biology, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA.

Abstract

This chapter describes approaches for learning models of subcellular organization from images. The primary utility of these models is expected to be from incorporation into complex simulations of cell behaviors. Most current cell simulations do not consider spatial organization of proteins at all, or treat each organelle type as a single, idealized compartment. The ability to build generative models for all proteins in a proteome and use them for spatially accurate simulations is expected to improve the accuracy of models of cell behaviors. A second use, of potentially equal importance, is expected to be in testing and comparing software for analyzing cell images. The complexity and sophistication of algorithms used in cell-image-based screens and assays (variously referred to as high-content screening, high-content analysis, or high-throughput microscopy) is continuously increasing, and generative models can be used to produce images for testing these algorithms in which the expected answer is known.

Copyright © 2012 Elsevier Inc. All rights reserved.

PMID:
22482949
[PubMed - indexed for MEDLINE]
PMCID:
PMC4107418
Free PMC Article

Images from this publication.See all images (7)Free text

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science Icon for PubMed Central
    Loading ...
    Write to the Help Desk