The dissolution rates of SiO2 nanoparticles as a function of particle size

Environ Sci Technol. 2012 May 1;46(9):4909-15. doi: 10.1021/es2045053. Epub 2012 Apr 16.

Abstract

There is a critical need to better define the relationship among particle size, surface area, and dissolution rate for nanoscale materials to determine their role in the environment, their toxicity, and their technological utility. Although some previous studies concluded that nanoparticles dissolve faster than their bulk analogs, contradictory evidence suggests that nanoparticles dissolve more slowly. Furthermore, insufficient characterization of the nanoparticulate samples and the solution chemistry in past studies obscures the relationship between particle size, surface area, and dissolution rate. Here we report amorphous SiO(2) dissolution rates in aqueous solutions determined from complementary mixed-flow and closed reactor experiments at 6.9 ≥ pH ≥ 11.2 and 25 °C as a function of particle diameter from 25 to 177 nm. Experiments were performed at far-from-equilibrium conditions to isolate kinetic effects from those of changing the reaction driving force on overall dissolution rates. Measured far-from-equilibrium mass normalized dissolution rates are nearly independent of particle size, but corresponding BET surface area normalized rates decrease substantially with decreasing particle size. Combining these observations with existing established kinetic rate equations allows the prediction of nanoparticle dissolution rates as a function of both particle size and aqueous fluid saturation state.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Nanoparticles / chemistry*
  • Particle Size
  • Silicon Dioxide / chemistry*
  • Solubility

Substances

  • Silicon Dioxide