Send to:

Choose Destination
See comment in PubMed Commons below
PLoS One. 2012;7(3):e34135. doi: 10.1371/journal.pone.0034135. Epub 2012 Mar 27.

Syringeal specialization of frequency control during song production in the Bengalese finch (Lonchura striata domestica).

Author information

  • 1Department of Psychology, Texas Christian University, Fort Worth, Texas, United States of America.



Singing in songbirds is a complex, learned behavior which shares many parallels with human speech. The avian vocal organ (syrinx) has two potential sound sources, and each sound generator is under unilateral, ipsilateral neural control. Different songbird species vary in their use of bilateral or unilateral phonation (lateralized sound production) and rapid switching between left and right sound generation (interhemispheric switching of motor control). Bengalese finches (Lonchura striata domestica) have received considerable attention, because they rapidly modify their song in response to manipulations of auditory feedback. However, how the left and right sides of the syrinx contribute to acoustic control of song has not been studied.


Three manipulations of lateralized syringeal control of sound production were conducted. First, unilateral syringeal muscular control was eliminated by resection of the left or right tracheosyringeal portion of the hypoglossal nerve, which provides neuromuscular innervation of the syrinx. Spectral and temporal features of song were compared before and after lateralized nerve injury. In a second experiment, either the left or right sound source was devoiced to confirm the role of each sound generator in the control of acoustic phonology. Third, air pressure was recorded before and after unilateral denervation to enable quantification of acoustic change within individual syllables following lateralized nerve resection.


These experiments demonstrate that the left sound source produces louder, higher frequency, lower entropy sounds, and the right sound generator produces lower amplitude, lower frequency, higher entropy sounds. The bilateral division of labor is complex and the frequency specialization is the opposite pattern observed in most songbirds. Further, there is evidence for rapid interhemispheric switching during song production. Lateralized control of song production in Bengalese finches may enhance acoustic complexity of song and facilitate the rapid modification of sound production following manipulations of auditory feedback.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Public Library of Science Icon for PubMed Central
    Loading ...
    Write to the Help Desk