Display Settings:

Format

Send to:

Choose Destination
J Exp Med. 2012 Apr 9;209(4):807-17. doi: 10.1084/jem.20111202. Epub 2012 Apr 2.

ATF3 protects against atherosclerosis by suppressing 25-hydroxycholesterol-induced lipid body formation.

Author information

  • 1Seattle Biomedical Research Institute, Seattle, WA 98109, USA.

Abstract

Atherosclerosis is a chronic inflammatory disease characterized by the accumulation of lipid-loaded macrophages in the arterial wall. We demonstrate that macrophage lipid body formation can be induced by modified lipoproteins or by inflammatory Toll-like receptor agonists. We used an unbiased approach to study the overlap in these pathways to identify regulators that control foam cell formation and atherogenesis. An analysis method integrating epigenomic and transcriptomic datasets with a transcription factor (TF) binding site prediction algorithm suggested that the TF ATF3 may regulate macrophage foam cell formation. Indeed, we found that deletion of this TF results in increased lipid body accumulation, and that ATF3 directly regulates transcription of the gene encoding cholesterol 25-hydroxylase. We further showed that production of 25-hydroxycholesterol (25-HC) promotes macrophage foam cell formation. Finally, deletion of ATF3 in Apoe(-/-) mice led to in vivo increases in foam cell formation, aortic 25-HC levels, and disease progression. These results define a previously unknown role for ATF3 in controlling macrophage lipid metabolism and demonstrate that ATF3 is a key intersection point for lipid metabolic and inflammatory pathways in these cells.

PMID:
22473958
[PubMed - indexed for MEDLINE]
PMCID:
PMC3328364
Free PMC Article

Images from this publication.See all images (5)Free text

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk