Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Nucleic Acids Res. 2012 Jul;40(13):e104. doi: 10.1093/nar/gks280. Epub 2012 Mar 29.

Identification of allele-specific alternative mRNA processing via transcriptome sequencing.

Author information

  • 1Department of Integrative Biology and Physiology, David Geffen School of Medicine and Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA 90095, USA.

Abstract

Establishing the functional roles of genetic variants remains a significant challenge in the post-genomic era. Here, we present a method, allele-specific alternative mRNA processing (ASARP), to identify genetically influenced mRNA processing events using transcriptome sequencing (RNA-Seq) data. The method examines RNA-Seq data at both single-nucleotide and whole-gene/isoform levels to identify allele-specific expression (ASE) and existence of allele-specific regulation of mRNA processing. We applied the methods to data obtained from the human glioblastoma cell line U87MG and primary breast cancer tissues and found that 26-45% of all genes with sufficient read coverage demonstrated ASE, with significant overlap between the two cell types. Our methods predicted potential mechanisms underlying ASE due to regulations affecting either whole-gene-level expression or alternative mRNA processing, including alternative splicing, alternative polyadenylation and alternative transcriptional initiation. Allele-specific alternative splicing and alternative polyadenylation may explain ASE in hundreds of genes in each cell type. Reporter studies following these predictions identified the causal single nucleotide variants (SNVs) for several allele-specific alternative splicing events. Finally, many genes identified in our study were also reported as disease/phenotype-associated genes in genome-wide association studies. Future applications of our approach may provide ample insights for a better understanding of the genetic basis of gene regulation underlying phenotypic diversity and disease mechanisms.

PMID:
22467206
[PubMed - indexed for MEDLINE]
PMCID:
PMC3401465
Free PMC Article

Images from this publication.See all images (6)Free text

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk