Send to:

Choose Destination
See comment in PubMed Commons below
J Biomed Opt. 2012 Feb;17(2):020501. doi: 10.1117/1.JBO.17.2.020501.

Reflection-mode submicron-resolution in vivo photoacoustic microscopy.


Submicron-resolution photoacoustic microscopy (PAM) currently exists only in transmission mode, due to the technical difficulties of combining high numerical-aperture (NA) optical illumination with high NA acoustic detection. The lateral resolution of reflection-mode PAM has not reached <2 μm in the visible light range. Here we develop the first reflection-mode submicron-resolution PAM system with a new compact design. By using a parabolic mirror to focus and reflect the photoacoustic waves, sufficient signals were collected for good sensitivity without distorting the optical focusing. By imaging nanospheres and a resolution test chart, the lateral resolution was measured to be ≈ 0.5 μm with an optical wavelength of 532 nm, an optical NA of 0.63. The axial resolution was measured at 15 μm. Here the axial resolution was measured by a different experiment with the lateral resolution measurement. But we didn't describe the details of axial resolution measurement due to space limit. The maximum penetration was measured at ≈ 0.42 mm in optical-scattering soft tissue. As a comparison, both the submicron-resolution PAM and a 2.4 μm-resolution PAM were used to image a mouse ear in vivo with the same optical wavelength and similar pulse energy. Capillaries were resolved better by the submicron-resolution PAM. Therefore, the submicron-resolution PAM is suitable for in vivo high-resolution imaging, or even subcellular imaging, of optical absorption.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Silverchair Information Systems Icon for PubMed Central
    Loading ...
    Write to the Help Desk