Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Neurosurg. 2012 Jun;116(6):1389-94. doi: 10.3171/2012.2.JNS111540. Epub 2012 Mar 30.

Improved survival following cerebral edema using a novel hollow fiber-hydrogel device.

Author information

  • 1B2K Group (Biotransport & Bioreaction Kinetics Group), Department of Bioengineering and the Center for Bioengineering Research, University of California, Riverside, California 92521, USA.

Abstract

OBJECT:

Cerebral edema is a significant cause of morbidity and mortality in many disease states. Current therapies of cerebral edema are often ineffective in treating severe edema. Here, the authors develop a hollow fiber-hydrogel device (HFHD) for direct surface contact-based treatment of severe cerebral edema.

METHODS:

Brain edema was induced in adult mice via water intoxication by intraperitoneal water administration (30% body weight). Control mice received no treatment. A distinct group of mice was treated with craniectomy but no device application (craniectomy only). A third experimental group was treated with craniectomy and HFHD application. The HFHD contained a lumen solution of 350 g/L bovine serum albumin in room-temperature artificial CSF at pH 7.4. Survival and brain water content were assessed as end points.

RESULTS:

Craniectomy and application of the HFHD enhanced survival in animals with severe cerebral edema. Animals treated with a craniectomy and HFHD (n = 5) survived up to 5 hours longer than animals treated with craniectomy only (n = 5) (p < 0.001) or no treatment (n = 5) (p < 0.001). Animals treated with craniectomy and HFHD (n = 5) had a survival rate of 80% within the observation period (360 minutes), whereas no animal treated with craniectomy only (n = 5) or no treatment (n = 5) survived longer than 50 and 33 minutes, respectively. Statistical significance was observed for the survival rate between the animals treated with a craniectomy + HFHD (n = 5) versus those treated with craniectomy only (n = 5) (p < 0.001), and craniectomy + HFHD versus no treatment (n = 5) (p < 0.001). Histological analysis demonstrated no significant cell loss in the cortex subjacent to HFHD application.

CONCLUSIONS:

Here, the authors demonstrate the feasibility of their HFHD to treat cerebral edema in this model. These results indicate that controlled water extraction from edematous brain tissue can be performed and can lead to increased survival compared with craniectomy only. Further studies remain to be performed to further optimize the HFHD and to test it in more clinically relevant models, such as traumatic brain injury.

PMID:
22462505
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Atypon
    Loading ...
    Write to the Help Desk