Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Opt Express. 2012 Mar 26;20(7):7694-705. doi: 10.1364/OE.20.007694.

High-resolution imaging of microvasculature in human skin in-vivo with optical coherence tomography.

Author information

  • 1Beckman Laser Institute, University of California, Irvine, Irvine, California 92612, USA. gangjun@gmail.com

Abstract

In this paper, the features of the intensity-based Doppler variance (IBDV) method were analyzed systemically with a flow phantom. The effects of beam scanning density, flow rate and the time interval between neighboring A-lines on the performance of this method were investigated. The IBDV method can be used to quantify the flow rate and its sensitivity can be improved by increasing the time interval between the neighboring A-lines. A higher sensitivity IBDV method that applies the algorithm along the slower scan direction was proposed. In comparison to laser speckle imaging maps of blood flow, we demonstrated the ability of the method to identify vessels with altered blood flow. In clinical measurements, we demonstrated the ability of the method to image vascular networks with exquisite spatial resolution and at depths up to 1.2 mm in human skin. These results collectively demonstrated the potential of the method to monitor the microvasculature during disease progression and in response to therapeutic intervention.

PMID:
22453448
[PubMed - indexed for MEDLINE]
PMCID:
PMC3368711
Free PMC Article

Images from this publication.See all images (10)Free text

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for PubMed Central
    Loading ...
    Write to the Help Desk