Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Biochem Biophys Res Commun. 2012 Apr 13;420(3):570-5. doi: 10.1016/j.bbrc.2012.03.035. Epub 2012 Mar 16.

Glucocorticoid-induced loss of DNA methylation in non-neuronal cells and potential involvement of DNMT1 in epigenetic regulation of Fkbp5.

Author information

  • 1Department of Medicine, Division of Endocrinology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.

Abstract

Glucocorticoids may play a significant role in the etiology of neuropsychiatric illnesses. Abnormalities in plasma cortisol levels, glucocorticoid sensitivity, and HPA-axis function often accompany clinical symptoms of stress-related illnesses such as PTSD and depression. Of particular interest are genetic association studies that link single nucleotide polymorphisms of HPA-axis genes with illnesses only in the context of an early-life trauma exposure such as child abuse. These studies suggest that dysregulation of HPA-axis function can have lasting repercussions in shaping mood and anxiety, long after termination of the traumatic experience. As persistent glucocorticoid-induced loss of DNA methylation in FK506 binding protein 5 (Fkbp5) was previously observed in the hippocampus and blood and in the neuronal cell line HT-22, we asked whether these epigenetic alterations occur in non-neuronal, HPA-axis relevant cells. We used the pituitary adenoma cell line AtT-20 to demonstrate that the intronic enhancer region of Fkbp5 undergoes loss of DNA methylation in response to dexamethasone treatment in a dose-dependent manner. We also focused on the mouse hippocampal dentate gyrus to test whether these changes would be enriched in a region implicated in the HPA-axis stress response, neurogenesis, and synaptic plasticity. We observed an increase in enrichment of DNA methylation loss in the dentate gyrus, as compared to whole hippocampal tissues that were similarly treated with glucocorticoids. We then asked whether DNA methyltransferase 1 (Dnmt1), a methyltransferase enzyme involved in maintaining DNA methylation following cell division, is involved in the observed epigenetic alterations. We found a dose-dependent decrease of Dnmt1 expression in the AtT-20 cells following dexamethasone treatment, and a similar decrease in corticosterone-treated mouse hippocampus. Taken together, we provide evidence that these glucocorticoid-induced epigenetic alterations have a broader validity in non-neuronal cells and that they may involve the DNA methylation machinery.

Copyright © 2012 Elsevier Inc. All rights reserved.

PMID:
22445894
[PubMed - indexed for MEDLINE]
PMCID:
PMC3327767
Free PMC Article

Images from this publication.See all images (3)Free text

Fig. 1
Fig. 2
Fig. 3
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for Elsevier Science Icon for PubMed Central
    Loading ...
    Write to the Help Desk