Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Neurosci. 2012 Mar 21;32(12):4240-6. doi: 10.1523/JNEUROSCI.5575-11.2012.

Deficiency of ATP13A2 leads to lysosomal dysfunction, α-synuclein accumulation, and neurotoxicity.

Author information

  • 1Department of Neurology, Harvard Medical School, Boston, MA, USA

Abstract

The autophagy-lysosomal pathway plays an important role in the clearance of long-lived proteins and dysfunctional organelles. Lysosomal dysfunction has been implicated in several neurodegenerative disorders including Parkinson's disease and related synucleinopathies that are characterized by accumulations of α-synuclein in Lewy bodies. Recent identification of mutations in genes linked to lysosomal function and neurodegeneration has offered a unique opportunity to directly examine the role of lysosomes in disease pathogenesis. Mutations in lysosomal membrane protein ATP13A2 (PARK9) cause familial Kufor-Rakeb syndrome characterized by early-onset parkinsonism, pyramidal degeneration and dementia. While previous data suggested a role of ATP13A2 in α-synuclein misfolding and toxicity, the mechanistic link has not been established. Here we report that loss of ATP13A2 in human fibroblasts from patients with Kufor-Rakeb syndrome or in mouse primary neurons leads to impaired lysosomal degradation capacity. This lysosomal dysfunction results in accumulation of α-synuclein and toxicity in primary cortical neurons. Importantly, silencing of endogenous α-synuclein attenuated the toxicity in ATP13A2-depleted neurons, suggesting that loss of ATP13A2 mediates neurotoxicity at least in part via the accumulation of α-synuclein. Our findings implicate lysosomal dysfunction in the pathogenesis of Kufor-Rakeb syndrome and suggest that upregulation of lysosomal function and downregulation of α-synuclein represent important therapeutic strategies for this disorder.

PMID:
22442086
[PubMed - indexed for MEDLINE]
PMCID:
PMC3462811
Free PMC Article

Publication Types, MeSH Terms, Substances, Supplementary Concepts, Grant Support

Publication Types

MeSH Terms

Substances

Supplementary Concepts

Grant Support

PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk