Format

Send to

Choose Destination
See comment in PubMed Commons below
PLoS One. 2012;7(3):e33450. doi: 10.1371/journal.pone.0033450. Epub 2012 Mar 12.

The Enterococcus faecalis exoproteome: identification and temporal regulation by Fsr.

Author information

  • 1Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom.

Abstract

Analysis of the culture supernatant exoproteins produced by two PFGE clusters of high-level gentamicin and ciprofloxacin-resistant clinical isolates of Enterococcus faecalis from the UK and Ireland revealed two distinct protein profiles. This grouping distinguished OG1RF and GelE metalloprotease-expressing isolates from JH2-2 and other GelE-negative isolates. The integrity of the fsrABDC operon was found to determine the exoproteome composition, since an fsrB mutant of strain OG1RF appeared very similar to that of strain JH2-2, and complementation of the latter with the fsrABDC operon produced an OG1RF-like exoproteome. The proteins present in the supernatant fraction of OG1RF were separated using 2D gels and identified by mass spectrometry and comprised many mass and pI variants of the GelE and SprE proteases. In addition cell wall synthesis and cell division proteins were identified. An OG1RF fsrB mutant had a distinct exoprotein fraction with an absence of the Fsr-regulated proteases and was characterised by general stress and glycolytic proteins. The exoproteome of the OG1RF fsrB mutant resembles that of a divIVA mutant of E. faecalis, suggestive of a stress phenotype.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Public Library of Science Icon for PubMed Central
    Loading ...
    Write to the Help Desk