Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Genetics. 2012 Jun;191(2):535-47. doi: 10.1534/genetics.112.139295. Epub 2012 Mar 16.

Allopolyploidization lays the foundation for evolution of distinct populations: evidence from analysis of synthetic Arabidopsis allohexaploids.

Author information

  • 1Department of Biology, University of Puget Sound, Tacoma, Washington, 98416, USA.

Abstract

Polyploidization is an important mechanism for introducing diversity into a population and promoting evolutionary change. It is believed that most, if not all, angiosperms have undergone whole genome duplication events in their evolutionary history, which has led to changes in genome structure, gene regulation, and chromosome maintenance. Previous studies have shown that polyploidy can coincide with meiotic abnormalities and somatic cytogenetic mosaics in Arabidopsis allotetraploids, but it is unclear whether this phenomenon can contribute to novel diversity or act as a mechanism for speciation. In this study we tested the hypothesis that mosaic aneuploidy contributes to the formation of incipient diversity in neoallopolyploids. We generated a population of synthesized Arabidopsis allohexaploids and monitored karyotypic and phenotypic variation in this population over the first seven generations. We found evidence of sibling line-specific chromosome number variations and rapidly diverging phenotypes between lines, including flowering time, leaf shape, and pollen viability. Karyotypes varied between sibling lines and between cells within the same tissues. Cytotypic variation correlates with phenotypic novelty, and, unlike in allotetraploids, remains a major genomic destabilizing factor for at least the first seven generations. While it is still unclear whether new stable aneuploid lines will arise from these populations, our data are consistent with the notion that somatic aneuploidy, especially in higher level allopolyploids, can act as an evolutionary relevant mechanism to induce rapid variation not only during the initial allopolyploidization process but also for several subsequent generations. This process may lay the genetic foundation for multiple, rather than just a single, new species.

PMID:
22426881
[PubMed - indexed for MEDLINE]
PMCID:
PMC3374316
Free PMC Article

Images from this publication.See all images (8)Free text

Figure 1 
Figure 2 
Figure 3 
Figure 4 
Figure 5 
Figure 6 
Figure 7 
Figure 8 
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk