Display Settings:

Format

Send to:

Choose Destination
We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
J Neurosci Res. 2012 Apr;90(4):743-50.

N-acetyl cysteine treatment reduces mercury-induced neurotoxicity in the developing rat hippocampus.

Author information

  • 1Department of Neuroscience and Cell Biology, UMDNJ-Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA.

Abstract

Mercury is an environmental toxicant that can disrupt brain development. However, although progress has been made in defining its neurotoxic effects, we know far less about available therapies that can effectively protect the brain in exposed individuals. We previously developed an animal model in which we defined the sequence of events underlying neurotoxicity: Methylmercury (MeHg) injection in postnatal rat acutely induced inhibition of mitosis and stimulated apoptosis in the hippocampus, which later resulted in intermediate-term deficits in structure size and cell number. N-acetyl cysteine (NAC) is the N-acetyl derivative of L-cysteine used clinically for treatment of drug intoxication. Here, based on its known efficacy in promoting MeHg urinary excretion, we evaluated NAC for protective effects in the developing brain. In immature neurons and precursors, MeHg (3 μM) induced a >50% decrease in DNA synthesis at 24 hr, an effect that was completely blocked by NAC coincubation. In vivo, injection of MeHg (5 μg/g bw) into 7-day-old rats induced a 22% decrease in DNA synthesis in whole hippocampus and a fourfold increase in activated caspase-3-immunoreactive cells at 24 hr and reduced total cell numbers by 13% at 3 weeks. Treatment of MeHg-exposed rats with repeated injections of NAC abolished MeHg toxicity. NAC prevented the reduction in DNA synthesis and the marked increase in caspase-3 immunoreactivity. Moreover, the intermediate-term decrease in hippocampal cell number provoked by MeHg was fully blocked by NAC. Altogether these results suggest that MeHg toxicity in the perinatal brain can be ameliorated by using NAC, opening potential avenues for therapeutic intervention.

Copyright © 2011 Wiley Periodicals, Inc.

PMID:
22420031
[PubMed - indexed for MEDLINE]
PMCID:
PMC3306130
Free PMC Article

Images from this publication.See all images (4)Free text

Figure 1
Figure 2
Figure 3
Figure 4
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for PubMed Central
    Loading ...
    Write to the Help Desk