Display Settings:

Format

Send to:

Choose Destination
Neuroimage. 2012 May 15;61(1):82-97. doi: 10.1016/j.neuroimage.2012.02.075. Epub 2012 Mar 5.

Visual analytics of brain networks.

Author information

  • 1School of Automation, Northwestern Polytechnical University, Xi'an, China.

Abstract

Identification of regions of interest (ROIs) is a fundamental issue in brain network construction and analysis. Recent studies demonstrate that multimodal neuroimaging approaches and joint analysis strategies are crucial for accurate, reliable and individualized identification of brain ROIs. In this paper, we present a novel approach of visual analytics and its open-source software for ROI definition and brain network construction. By combining neuroscience knowledge and computational intelligence capabilities, visual analytics can generate accurate, reliable and individualized ROIs for brain networks via joint modeling of multimodal neuroimaging data and an intuitive and real-time visual analytics interface. Furthermore, it can be used as a functional ROI optimization and prediction solution when fMRI data is unavailable or inadequate. We have applied this approach to an operation span working memory fMRI/DTI dataset, a schizophrenia DTI/resting state fMRI (R-fMRI) dataset, and a mild cognitive impairment DTI/R-fMRI dataset, in order to demonstrate the effectiveness of visual analytics. Our experimental results are encouraging.

Copyright © 2012 Elsevier Inc. All rights reserved.

PMID:
22414991
[PubMed - indexed for MEDLINE]
PMCID:
PMC3956683
Free PMC Article

Images from this publication.See all images (15)Free text

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science Icon for PubMed Central
    Loading ...
    Write to the Help Desk