Send to:

Choose Destination
See comment in PubMed Commons below
Protein Pept Lett. 2012 Mar;19(3):345-52.

Sequence preference of α-helix N-terminal tetrapeptide.

Author information

  • 1College of Chemistry and Molecular Engineering, Peking University, Beijing, China.


The α-helix is the most abundant secondary structure in proteins. Due to the specific i, i+4 hydrogen bond pattern, the two termini have unsatisfied hydrogen bonds, and are less constrained; in order to compensate for this, specific residues are preferred for the terminal positions. However, a naive combination of the statistically-preferred residues for each position may not result in a stable N-terminal helical sequence. In order to provide a set of preferable N-terminal peptides for α-helix design, we have studied the N-terminal tetrapeptide sequence motifs that are favorable for helix formation using statistical analysis and atomistic simulations. A set of tetrapeptide sequences including TEEE and TPEE were found to be favorable motifs. In addition to forming more hydrogen bonds in the helical conformation, the favorable motifs also tended to form more capping boxes. To empirically test our predictions, we obtained 10 peptides with different N-terminal motifs and measured their α-helical content by circular dichroism spectroscopy. The experimental results agreed qualitatively with the statistical and simulation results. Furthermore, some of the suggested preferable tetrapeptide sequences have been successfully applied in de novo protein design.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Bentham Science Publishers Ltd.
    Loading ...
    Write to the Help Desk