Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Appl Clin Med Phys. 2012 Mar 8;13(2):3402. doi: 10.1120/jacmp.v13i2.3402.

Sensitivity analysis of an asymmetric Monte Carlo beam model of a Siemens Primus accelerator.

Author information

  • 1Department of Radiation Oncology, NCCH Rm. CB364, Campus Box 7512, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27514, USA. erics@med.unc.edu

Abstract

The assumption of cylindrical symmetry in radiotherapy accelerator models can pose a challenge for precise Monte Carlo modeling. This assumption makes it difficult to account for measured asymmetries in clinical dose distributions. We have performed a sensitivity study examining the effect of varying symmetric and asymmetric beam and geometric parameters of a Monte Carlo model for a Siemens PRIMUS accelerator. The accelerator and dose output were simulated using modified versions of BEAMnrc and DOSXYZnrc that allow lateral offsets of accelerator components and lateral and angular offsets for the incident electron beam. Dose distributions were studied for 40 × 40 cm² fields. The resulting dose distributions were analyzed for changes in flatness, symmetry, and off-axis ratio (OAR). The electron beam parameters having the greatest effect on the resulting dose distributions were found to be electron energy and angle of incidence, as high as 5% for a 0.25° deflection. Electron spot size and lateral offset of the electron beam were found to have a smaller impact. Variations in photon target thickness were found to have a small effect. Small lateral offsets of the flattening filter caused significant variation to the OAR. In general, the greatest sensitivity to accelerator parameters could be observed for higher energies and off-axis ratios closer to the central axis. Lateral and angular offsets of beam and accelerator components have strong effects on dose distributions, and should be included in any high-accuracy beam model.

PMID:
22402376
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Loading ...
    Write to the Help Desk