Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Mol Biol Cell. 2012 May;23(9):1700-14. doi: 10.1091/mbc.E11-11-0938. Epub 2012 Mar 7.

Molecular motor function in axonal transport in vivo probed by genetic and computational analysis in Drosophila.

Author information

  • 1Howard Hughes Medical Institute, University of California, San Diego, La Jolla, CA 92093, USA.

Abstract

Bidirectional axonal transport driven by kinesin and dynein along microtubules is critical to neuronal viability and function. To evaluate axonal transport mechanisms, we developed a high-resolution imaging system to track the movement of amyloid precursor protein (APP) vesicles in Drosophila segmental nerve axons. Computational analyses of a large number of moving vesicles in defined genetic backgrounds with partial reduction or overexpression of motor proteins enabled us to test with high precision existing and new models of motor activity and coordination in vivo. We discovered several previously unknown features of vesicle movement, including a surprising dependence of anterograde APP vesicle movement velocity on the amount of kinesin-1. This finding is largely incompatible with the biophysical properties of kinesin-1 derived from in vitro analyses. Our data also suggest kinesin-1 and cytoplasmic dynein motors assemble in stable mixtures on APP vesicles and their direction and velocity are controlled at least in part by dynein intermediate chain.

PMID:
22398725
[PubMed - indexed for MEDLINE]
PMCID:
PMC3338437
Free PMC Article

Images from this publication.See all images (6)Free text

FIGURE 1:
FIGURE 2:
FIGURE 3:
FIGURE 4:
FIGURE 5:
FIGURE 6:
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk