Display Settings:


Send to:

Choose Destination
See comment in PubMed Commons below
Nanotechnology. 2012 Mar 30;23(12):125401. doi: 10.1088/0957-4484/23/12/125401. Epub 2012 Mar 7.

Energy dissipation distributions and dissipative atomic processes in amplitude modulation atomic force microscopy.

Author information

  • 1Laboratory of Energy and Nanosciences, Masdar Institute of Science and Technology, Abu Dhabi, UAE.


Instantaneous and average energy dissipation distributions in the nanoscale due to short and long range interactions are described. We employ both a purely continuous and a semi-discrete approach to analyze the consequences of this distribution in terms of rate of heat generation, thermal flux, adhesion hysteresis, viscoelasticity and atomic dissipative processes. The effects of peak values are also discussed in terms of the validity of the use of average values of power and energy dissipation. Analytic expressions for the instantaneous power are also derived. We further provide a general expression to calculate the effective area of interaction for fundamental dissipative processes and relate it to the energy distribution profile in the interaction area. Finally, a semi-discrete approach to model and interpret atomic dissipative processes is proposed and shown to lead to realistic values for the atomic bond dissipation and viscoelastic atomic processes.

PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for IOP Publishing Ltd.
    Loading ...
    Write to the Help Desk