Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Proc Natl Acad Sci U S A. 2012 Mar 13;109(11):4122-7. doi: 10.1073/pnas.1112081109. Epub 2012 Mar 5.

Homology models guide discovery of diverse enzyme specificities among dipeptide epimerases in the enolase superfamily.

Author information

  • 1Department of Biochemistry, University of Illinois at Urbana Champaign, Urbana, IL 61801, USA.

Abstract

The rapid advance in genome sequencing presents substantial challenges for protein functional assignment, with half or more of new protein sequences inferred from these genomes having uncertain assignments. The assignment of enzyme function in functionally diverse superfamilies represents a particular challenge, which we address through a combination of computational predictions, enzymology, and structural biology. Here we describe the results of a focused investigation of a group of enzymes in the enolase superfamily that are involved in epimerizing dipeptides. The first members of this group to be functionally characterized were Ala-Glu epimerases in Eschericiha coli and Bacillus subtilis, based on the operon context and enzymological studies; these enzymes are presumed to be involved in peptidoglycan recycling. We have subsequently studied more than 65 related enzymes by computational methods, including homology modeling and metabolite docking, which suggested that many would have divergent specificities;, i.e., they are likely to have different (unknown) biological roles. In addition to the Ala-Phe epimerase specificity reported previously, we describe the prediction and experimental verification of: (i) a new group of presumed Ala-Glu epimerases; (ii) several enzymes with specificity for hydrophobic dipeptides, including one from Cytophaga hutchinsonii that epimerizes D-Ala-D-Ala; and (iii) a small group of enzymes that epimerize cationic dipeptides. Crystal structures for certain of these enzymes further elucidate the structural basis of the specificities. The results highlight the potential of computational methods to guide experimental characterization of enzymes in an automated, large-scale fashion.

PMID:
22392983
[PubMed - indexed for MEDLINE]
PMCID:
PMC3306705
Free PMC Article

Images from this publication.See all images (4)Free text

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk