Display Settings:


Send to:

Choose Destination
See comment in PubMed Commons below
Biophys J. 2012 Feb 22;102(4):887-96. doi: 10.1016/j.bpj.2012.01.011. Epub 2012 Feb 21.

An atomistic view on human hemoglobin carbon monoxide migration processes.

Author information

  • 1Joint BSC-IRB Research Program in Computational Biology, Barcelona Supercomputing Center, Barcelona, Spain.


A significant amount of work has been devoted to obtaining a detailed atomistic knowledge of the human hemoglobin mechanism. Despite this impressive research, to date, the ligand diffusion processes remain unclear and controversial. Using recently developed computational techniques, PELE, we are capable of addressing the ligand migration processes. First, the methodology was tested on myoglobin's CO migration, and the results were compared with the wealth of theoretical and experimental studies. Then, we explored both hemoglobin tense and relaxed states and identified the differences between the α-and β-subunits. Our results indicate that the proximal site, equivalent to the Xe1 cavity in myoglobin, is never visited. Furthermore, strategically positioned residues alter the diffusion processes within hemoglobin's subunits and suggest that multiple pathways exist, especially diversified in the α-globins. A significant dependency of the ligand dynamics on the tertiary structure is also observed.

Copyright © 2012 Biophysical Society. Published by Elsevier Inc. All rights reserved.

[PubMed - indexed for MEDLINE]
Free PMC Article

Images from this publication.See all images (4)Free text

Figure 1
Figure 2
Figure 3
Figure 4
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Icon for Elsevier Science Icon for PubMed Central
    Loading ...
    Write to the Help Desk