Send to:

Choose Destination
See comment in PubMed Commons below
Biochim Biophys Acta. 2012 Jul;1819(7):694-9. doi: 10.1016/j.bbagrm.2012.02.005. Epub 2012 Feb 16.

Isolation and characterization of transcription fidelity mutants.

Author information

  • 1Gene Regulation and Chromosome Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA.


Accurate transcription is an essential step in maintaining genetic information. Error-prone transcription has been proposed to contribute to cancer, aging, adaptive mutagenesis, and mutagenic evolution of retroviruses and retrotransposons. The mechanisms controlling transcription fidelity and the biological consequences of transcription errors are poorly understood. Because of the transient nature of mRNAs and the lack of reliable experimental systems, the identification and characterization of defects that increase transcription errors have been particularly challenging. In this review we describe novel genetic screens for the isolation of fidelity mutants in both Saccharomyces cerevisiae and Escherichia coli RNA polymerases. We obtained and characterized two distinct classes of mutants altering NTP misincorporation and transcription slippage both in vivo and in vitro. Our study not only validates the genetic schemes for the isolation of RNA polymerase mutants that alter fidelity, but also sheds light on the mechanism of transcription accuracy. This article is part of a Special Issue entitled: Chromatin in time and space.

Published by Elsevier B.V.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk