Display Settings:

Format

Send to:

Choose Destination
Biochem Pharmacol. 2012 May 15;83(10):1358-63. doi: 10.1016/j.bcp.2012.02.005. Epub 2012 Feb 16.

Inhibition of pyrimidine and purine nucleoside phosphorylases by a 3,5-dichlorobenzoyl-substituted 2-deoxy-D-ribose-1-phosphate derivative.

Author information

  • 1Rega Institute for Medical Research, KU Leuven, Minderbroedersstraat 10, B-3000 Leuven, Belgium.

Abstract

The 3,5-dichlorobenzoyl-substituted 2-deoxy-D-ribose-1-phosphate derivative, designated Cf2891, was found to inhibit a variety of pyrimidine and purine nucleoside phosphorylases (NPs) with preference for uridine- and inosine-hydrolyzing enzymes [uridine phosphorylase (UP; EC 2.4.2.3), pyrimidine nucleoside phosphorylase (PyNP; EC 2.4.2.2) and purine nucleoside phosphorylase (PNP; EC 2.4.2.1)]. Kinetic analyses revealed that Cf2891 competes with inorganic phosphate (P(i)) for binding to the NPs and, depending on the nature of the enzyme, acts as a competitive or non-competitive inhibitor with regard to the nucleoside binding site. Also, the compound prevents breakdown of pyrimidine analogues used in the treatment of viral infections and cancer. Since NPs are abundantly present in tumor tissue and may be overexpressed due to secondary bacterial infections in immunocompromised patients suffering viral infections, Cf2891 may serve as a lead molecule for the development of inhibitors to be used in nucleoside-based combination therapy.

Copyright © 2012 Elsevier Inc. All rights reserved.

PMID:
22366108
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk