Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Eur J Cell Biol. 2012 May;91(5):420-5. doi: 10.1016/j.ejcb.2012.01.002. Epub 2012 Feb 22.

Perturbations of the actin cytoskeleton activate a Dictyostelium STAT signalling pathway.

Author information

  • 1College of Life Sciences, Welcome Trust Biocentre, University of Dundee, Dow St., Dundee DD1 5EH, United Kingdom.

Abstract

The Dictyostelium transcription factor STATc is tyrosine phosphorylated and accumulates in the nucleus when cells are exposed either to hyper-osmotic stress or to the prestalk-inducing polyketide DIF-1. In the case of stress STAT activation is mediated by regulated dephosphorylation; whereby two serine residues on PTP3, the tyrosine phosphatase that de-activates STATc, become phosphorylated after exposure to stress so inhibiting enzymatic activity. We now show that the more highly regulated of the two PTP3 serine residues, S747, is also phosphorylated in response to DIF-1, suggesting a common activation mechanism. Hyper-osmotic stress causes a re-distribution of F-actin to the cortex, cell rounding and shrinkage and we show that DIF-1 induces a similar but transient F-actin re-distribution and rounding response. We also find that two mechanistically distinct inhibitors of actin polymerization, latrunculin A and cytochalasin A induce phosphorylation at S747 of PTP3 and activate STATc. We suggest that PTP3 phosphorylation, and consequent STATc activation, are regulated by changes in F-actin polymerization status during stress and DIF-induced cytoskeletal remodelling.

Copyright © 2012 Elsevier GmbH. All rights reserved.

PMID:
22365144
[PubMed - indexed for MEDLINE]
PMCID:
PMC3315007
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for PubMed Central
    Loading ...
    Write to the Help Desk