Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Neurochem Int. 2012 Nov;61(6):948-53. doi: 10.1016/j.neuint.2012.02.002. Epub 2012 Feb 13.

The electrotonic architecture of the retinal microvasculature: diabetes-induced alteration.

Author information

  • 1Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA.

Abstract

Although microvascular cell death is a well established hallmark of diabetic retinopathy, which is a major cause of vision loss, much remains to be learned about the functional changes that precede the onset of morphological damage to retinal blood vessels. Early alterations of function are of interest since they may contribute to the development of irreversible pathological events. Because one of the earliest retinal effects of diabetes is the dysregulation of blood flow, we asked whether diabetes alters the functional organization of the capillary/arteriolar complex, which is the operational unit that plays an important role in regulating local perfusion. In this study, the effect of diabetes on the electrotonic architecture of the retinal microvasculature was characterized. To do this, we quantified the efficacy by which voltages are transmitted between pairs perforated-patch pipettes sealed onto abluminal cells located at well defined locations in capillary/arteriolar complexes freshly isolated from the retinas of rats made diabetic by streptozotocin. Results of these dual recording experiments were compared with data from similar experiments performed on non-diabetic retinal microvessels. These experiments revealed that diabetes caused a ∼5-fold increase in the rate at which a voltage decays as it axially spreads through the retinal microvasculature. In contrast, the efficacy of radial abluminal cell/endothelial cell transmission was not significantly affected by diabetes. Based on the results of this study, which is the first to characterize how diabetes affects voltage transmission in capillary/arteriolar complexes of any tissue, we concluded that by selectively inhibiting axial transmission, diabetes alters the electrotonic architecture of the retinal microvasculature. This diabetes-induced alteration in the functional organization of the capillary/arteriolar unit is likely to impair its ability to efficiently and effectively regulate blood flow and thereby, may contribute to the progression of sight-threatening complications of diabetic retinopathy.

Copyright © 2012 Elsevier Ltd. All rights reserved.

PMID:
22349410
[PubMed - indexed for MEDLINE]
PMCID:
PMC3359402
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science Icon for PubMed Central
    Loading ...
    Write to the Help Desk